37 research outputs found

    A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps

    Get PDF
    Background The use of venom in intraspecific aggression is uncommon and venom-transmitting structures specifically used for intraspecific competition are found in few lineages of venomous taxa. Next-generation transcriptome sequencing allows robust characterization of venom diversity and exploration of functionally unique tissues. Using a tissue-specific RNA-seq approach, we investigate the venom composition and gene ontology diversity of acrorhagi, specialized structures used in intraspecific competition, in aggressive and non-aggressive polyps of the aggregating sea anemone Anthopleura elegantissima (Cnidaria: Anthozoa: Hexacorallia: Actiniaria: Actiniidae). Results Collectively, we generated approximately 450,000 transcripts from acrorhagi of aggressive and non-aggressive polyps. For both transcriptomes we identified 65 candidate sea anemone toxin genes, representing phospholipase A2s, cytolysins, neurotoxins, and acrorhagins. When compared to previously characterized sea anemone toxin assemblages, each transcriptome revealed greater within-species sequence divergence across all toxin types. The transcriptome of the aggressive polyp had a higher abundance of type II voltage gated potassium channel toxins/Kunitz-type protease inhibitors and type II acrorhagins. Using toxin-like proteins from other venomous taxa, we also identified 612 candidate toxin-like transcripts with signaling regions, potentially unidentified secretory toxin-like proteins. Among these, metallopeptidases and cysteine rich (CRISP) candidate transcripts were in high abundance. Furthermore, our gene ontology analyses identified a high prevalence of genes associated with “blood coagulation” and “positive regulation of apoptosis”, as well as “nucleoside: sodium symporter activity” and “ion channel binding”. The resulting assemblage of expressed genes may represent synergistic proteins associated with toxins or proteins related to the morphology and behavior exhibited by the aggressive polyp. Conclusion We implement a multifaceted approach to investigate the assemblage of expressed genes specifically within acrorhagi, specialized structures used only for intraspecific competition. By combining differential expression, phylogenetic, and gene ontology analyses, we identify several candidate toxins and other potentially important proteins in acrorhagi of A. elegantissima. Although not all of the toxins identified are used in intraspecific competition, our analysis highlights some candidates that may play a vital role in intraspecific competition. Our findings provide a framework for further investigation into components of venom used exclusively for intraspecific competition in acrorhagi-bearing sea anemones and potentially other venomous animals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1417-4) contains supplementary material, which is available to authorized users

    Widest geographic distribution of a shallow and mesophotic antipatharian coral (Anthozoa: Hexacorallia): Antipathes grandis VERRILL, 1928 – confirmed by morphometric and molecular analyses

    Get PDF
    We provide the first record of the shallow and mesophotic ( 200 m depth) benthic taxa have such wide geographic distributions

    Comparative transcriptomics reveal developmental turning points during embryogenesis of a hemimetabolous insect, the damselfly Ischnura elegans

    Full text link
    Identifying transcriptional changes during embryogenesis is of crucial importance for unravelling evolutionary, molecular and cellular mechanisms that underpin patterning and morphogenesis. However, comparative studies focusing on early/embryonic stages during insect development are limited to a few taxa. Drosophila melanogaster is the paradigm for insect development, whereas comparative transcriptomic studies of embryonic stages of hemimetabolous insects are completely lacking. We reconstructed the first comparative transcriptome covering the daily embryonic developmental progression of the blue-tailed damselfly Ischnura elegans (Odonata), an ancient hemimetabolous representative. We identified a “core” set of 6,794 transcripts – shared by all embryonic stages – which are mainly involved in anatomical structure development and cellular nitrogen compound metabolic processes. We further used weighted gene co-expression network analysis to identify transcriptional changes during Odonata embryogenesis. Based on these analyses distinct clusters of transcriptional active sequences could be revealed, indicating that embryos at different development stages have their own transcriptomic profile according to the developmental events and leading to sequential reprogramming of metabolic and developmental genes. Interestingly, a major change in transcriptionally active sequences is correlated with katatrepsis (revolution) during mid-embryogenesis, a 180° rotation of the embryo within the egg and specific to hemimetabolous insects

    Comparative Transcriptomics Reveal Developmental Turning Points during Embryogenesis of a Hemimetabolous Insect, the Damselfly Ischnura elegans

    Full text link
    Identifying transcriptional changes during embryogenesis is of crucial importance for unravelling evolutionary, molecular and cellular mechanisms that underpin patterning and morphogenesis. However, comparative studies focusing on early/embryonic stages during insect development are limited to a few taxa. Drosophila melanogaster is the paradigm for insect development, whereas comparative transcriptomic studies of embryonic stages of hemimetabolous insects are completely lacking. We reconstructed the first comparative transcriptome covering the daily embryonic developmental progression of the blue-tailed damselfly Ischnura elegans (Odonata), an ancient hemimetabolous representative. We identified a “core” set of 6,794 transcripts – shared by all embryonic stages – which are mainly involved in anatomical structure development and cellular nitrogen compound metabolic processes. We further used weighted gene co-expression network analysis to identify transcriptional changes during Odonata embryogenesis. Based on these analyses distinct clusters of transcriptional active sequences could be revealed, indicating that embryos at different development stages have their own transcriptomic profile according to the developmental events and leading to sequential reprogramming of metabolic and developmental genes. Interestingly, a major change in transcriptionally active sequences is correlated with katatrepsis (revolution) during mid-embryogenesis, a 180° rotation of the embryo within the egg and specific to hemimetabolous insects

    A Global eDNA Comparison of Freshwater Bacterioplankton Assemblages Focusing on Large-River Floodplain Lakes of Brazil

    Get PDF
    With its network of lotic and lentic habitats that shift during changes in seasonal connection, the tropical and subtropical large-river systems represent possibly the most dynamic of all aquatic environments. Pelagic water samples were collected from Brazilian floodplain lakes (total n = 58) in four floodpulsed systems (Amazon [n = 21], Araguaia [n = 14], Paraná [n = 15], and Pantanal [n = 8]) in 2011–2012 and sequenced via 454 for bacterial environmental DNA using 16S amplicons; additional abiotic field and laboratory measurements were collected for the assayed lakes.We report here a global comparison of the bacterioplankton makeup of freshwater systems, focusing on a comparison of Brazilian lakes with similar freshwater systems across the globe. The results indicate a surprising similarity at higher taxonomic levels of the bacterioplankton in Brazilian freshwater with global sites. However, substantial novel diversity at the family level was also observed for the Brazilian freshwater systems. Brazilian freshwater bacterioplankton richness was relatively average globally. Ordination results indicate that Brazilian bacterioplankton composition is unique from other areas of the globe. Using Brazil-only ordinations, floodplain system differentiation most strongly correlated with dissolved oxygen, pH, and phosphate. Our data on Brazilian freshwater systems in combination with analysis of a collection of freshwater environmental samples from across the globe offers the first regional picture of bacterioplankton diversity in these important freshwater systems

    Morphological and molecular characterizationof a new species of black coral from Elvers Bank, north-western Gulf of Mexico (Cnidaria:Anthozoa: Hexacorallia: Antipatharia:Aphanipathidae: Distichopathes)

    Full text link
    The continental shelf edge of the NW Gulf of Mexico supports dozens of reefs and banks, including the West and East Flower Garden Banks (FGB) and Stetson Bank that comprise the Flower Garden Banks National Marine Sanctuary (FGBNMS). Discovered by fishermen in the early 1900s, the FGBs are named after the colourful corals, sponges and algae that dominate the region. The reefs and banks are the surface expression of underlying salt domes and provide important habitat for mesophotic coral ecosystems (MCE) and deep coral communities to 300 m depth. Since 2001, FGBNMS research teams have utilized remotely operated vehicles (e.g. ‘Phantom S2’, ‘Mohawk’, ‘Yogi’) to survey and characterize benthic habitats of this region. In 2016, a Draft Environmental Impact Statement proposed the expansion of the current sanctuary boundaries to incorporate an additional 15 reefs and banks, including Elvers Bank. Antipatharians (black corals) were collected within the proposed expansion sites and analysed using morphological and molecular methods. A new species, Distichopathes hickersonae, collected at 172 m depth on Elvers Bank, is described within the family Aphanipathidae. This brings the total number of black coral species in and around the sanctuary to 14

    The Phylum Cnidaria: A Review of Phylogenetic Patterns and Diversity 300 Years After Linnaeus

    Get PDF
    Systema Naturae includes representatives of every major lineage of the animal phylum Cnidaria. However, Linnaeus did not classify the members of the phylum as is now done, and the diversity of the group is not well represented. We contrast the Linnaean perspective on cnidarian diversity with the modern, phylogenetic perspective. For each order, we detail diversity at the family level, providing phylogenetic context where possible

    The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus

    Get PDF
    Systema Naturae includes representatives of every major lineage of the animal phylum Cnidaria. However, Linnaeus did not classify the members of the phylum as is now done, and the diversity of the group is not well represented. We contrast the Linnaean perspective on cnidarian diversity with the modern, phylogenetic perspective. For each order, we detail diversity at the family level, providing phylogenetic context where possible

    The mitogenome of the bed bug Cimex lectularius (Hemiptera: Cimicidae)

    Full text link
    We report the extraction of a bed bug mitogenome from high-throughput sequencing projects originally focused on the nuclear genome of Cimex lectularius. The assembled mitogenome has a similar AT nucleotide composition bias found in other insects. Phylogenetic analysis of all protein-coding genes indicates that C. lectularius is clearly a member of a paraphyletic Cimicomorpha clade within the Order Hemiptera

    Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing

    Full text link
    Modern metagenomic environmental DNA studies are almost completely reliant on next-generation sequencing, making evaluations of these methods critical. We compare two next-generation sequencing techniques – amplicon and shotgun – on water samples across four of Brazil’s major river floodplain systems (Amazon, Araguaia, Paraná, and Pantanal). Less than 50% of phyla identified via amplicon sequencing were recovered from shotgun sequencing, clearly challenging the dogma that mid-depth shotgun recovers more diversity than amplicon-based approaches. Amplicon sequencing also revealed ~27% more families. Overall the amplicon data were more robust across both biodiversity and community ecology analyses at different taxonomic scales. Our work doubles the sampling size in similar environmental studies, and novelly integrates environmental data (e.g., pH, temperature, nutrients) from each site, revealing divergent correlations depending on which data are used. While myriad variants on NGS techniques and bioinformatic pipelines are available, our results point to core differences that have not been highlighted in any studies to date. Given the low number of taxa identified when coupling shotgun data with clade-based taxonomic algorithms, previous studies that quantified biodiversity using such bioinformatic tools should be viewed cautiously or re-analyzed. Nonetheless, shotgun has complementary advantages that should be weighed when designing projects
    corecore